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A bit about observations 
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How to describe an apple just by 
looking at it? 

An apple is round and  is green and/or red 
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And now backwards! 

It is round, red and/or green, and therefore an apple? 
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We need a priori knowledge 

When we know we are looking at apples, then we can we describe its properties:  
  it is a nice round, red and/or green apple. 
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In terms of observations 

? 
in 

Object with known properties 

in observation 
????????????????????? 

Direct problem 

Inverse problem 
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The complexity of the inverse 
problem 

• How to describe the characteristics of an object 
 

• With a limited  number of observed parameters 
 

• With sufficient accuracy? 
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What do we measure with a radar? 

Signals 
 amplitude 
 phase 
 polarization 
 frequency 

Without interpretation meaningless parameters! 

For remote sensing: we want to derive the physical properties of system earth  
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frequency 

phase 

polarization 

amplitude 

Position/velocity shape of object type of object sensitivity 

How can we use EM-waves?  
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Signals and meaning 

in observation 
????????????????????? 

Inverse problem 

EM-waves 
Power 
Voltage 
Phase 
Polarization 

EM-waves 
Power 
Voltage 
Phase 
Polarization 

What are the physical properties 
of the object? 

� �, , ,F amplitude phase polarization frequency
model 
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Applications 

EM-waves 
Power 
Voltage 
Phase 
Polarization 

EM-waves 
Power 
Voltage 
Phase 
Polarization 

� �, , ,F amplitude phase polarization frequency

Rainfall, clouds, wind, greenhouse gases 
Sea temperature, soil moisture, vegetation 
Ocean currents, polar ice, glaciers 

Questions:  
how much rain, ice, gas etc? 
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Signals and meaning, 2 

� �, ,out F x y z 

What is the accuracy of ‘out’? 

� � � � � �2 2 22 , , , , , ,F x y z F x y z F x y zout x y z
out x y z

' ' ''
 ' � ' � '

So we must know the accuracy of x,y,z 
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And the required accuracy of the signal comes from 
the model. Suppose a simple model: the model output 

is related to the power P: 

1
1outout P out P P P P

out P P
P

E

E
E ED ED DE

D
E

�
� o o    

+ + ++ +

1P out
P outE

 
+ +

Required accuracy of parameter 
of interest 

Needed accuracy of observed power 
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Example of model: weather radar 

Rainfall rate R 
a,b constants 

Radar reflectivity factor Z 

b~1.5: 
If we want to know R  
Within 10% then Z has to  
be measured within 15% 
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How to achieve the required 
accuracy? 

• Understand and quantify error sources 
 

• Understand and quantify signal behaviour 
 

• Reduce noise 
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Back to the radar equation 

Radar 

Target 

� �

2

3 444
t t r s s

rec
PG G L CLP

RR
O V V

S
  

System parameters 

Path loss 

Radar cross section: 
target properties 
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3tot mN N

vol k i
k i

VolumeV V V  �¦ ¦ vol VolumeV K �

reflectivity 

Example: the target is a volume 
filled with raindrops 

Summation over  
complete volume 

Summation over  
cubic meter 

Radar cross-section of volume 
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R M

dR 

2 2

4
Volume R dR

S M 

transmit 

receive 

� � � �

2 2 2 2

3 3 2 24 4 644 4
t t r s t t r s t t r s

rec tot
PG G L PG G L PG G L dR

P Volume
RR R

O O O IV K K
SS S

  �  

Radar equation for volume 
scattering,1 
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2 2

2 264
t t r

rec s s
PG G

P dR L CL
R
O SI K K

S
§ ·

 �  ¨ ¸
© ¹

Deterministic: 
Calibration of system 

To reduce errors 

Stochastic: 
Signal processing to reduce errors 

Radar equation for volume 
scattering,2 
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2 2

2 264
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Radar equation for volume 
scattering,3 

Since the target is of stochastic nature, we need more measurements 
and integrate. The brackets denote time-average: 

How do we know how long we have to average? 
We have to know the variance of the signal: theory of signal statistics  
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Signal statistics, time series,  
N samples 
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Voltage 

Mean power 

Variance 

Uncorrelated samples 
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Estimation of mean power 

Q: How to determine the number of samples in advance? 
A: We have to know the statistical properties of the signal. 

The variance of the signal can be reduced with averaging 

Statistical distribution of power, voltage, phase 
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R M

dR 

� � � � � �� � � �� �Re Imj j j
j j j

V t V t V t V t  �¦ ¦ ¦

Phase of V(t) uniformly distributed 
From statistics: many particles > central limit theorem:  
Gaussian distribution of real and imaginary part 

Signal statistics for volume scattering; 
one sample, many drops 

 
Every drop j gives a complex voltage Vj  
With amplitude and phase 
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Statistical model of radar signal in 
case of volume scattering 
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Statistical model of radar signal: 
probability density functions 
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amplitude 

phase 

power 
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Probability 
density 
functions 

Rayleigh 

Exponential 

Known pdf’s: 
 
Known mean, 
Variance etc 
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Statistical moments of  
voltage and power 

� � 24; var
2 2

V VS SV V�
  

� � 2
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One sample 

N samples 
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What is correlation? 
R

ec
ei

ve
d 

po
w

er
 

High correlation 

Moderate correlation 

Low correlation 
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Predicted accuracy based on signal model 

Typical values for a weather radar 

Measure for turbulence in radar volume:  
The lower , the higher the correlation 
And the smaller the effect of integration 
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Trade-off integration time 

Integration time ok 

Integration time too long 

The physical properties of the target may not change too much 
during the integration time: the result becomes meaningless! 
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Signal basics weather radar,1 

Incoming field 

raindrop 
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The Doppler effect 
� �sin tv T

tT rT
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Forward scatter:  
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Backscatter:  

Signal basics weather radar,2 

Doppler shift is only representative for the velocity along the antenna beam 
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Maximum phase shift  
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Maximum unambiguous Doppler velocity  

Signal basics weather radar,3 

Time between two samples 
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Scattering by N particles: 
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Signal basics weather radar,4 
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Received  power 
incoherent 

coherent 

Signal basics weather radar,5 
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Doppler information is coded in the signal phase: 
  
a power measurement is not sufficient 
 
complex processing is required to retrieve the particle speed 
 
e.g.fourier transforms, autocorrelation functions 

Signal basics weather radar,6 
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Basis of spectral processing 
one radar cell, one distance 
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Doppler frequency 

Power 

Doppler Width 

We obtain a spectrum of all frequencies 

� �

� �

� � � �

2

2

22

1

1

tot tot

d tot
tot

d d tot
tot

P E f df

f f E f df
P

f f E f df
P

V

 

 

 �

³

³

³

f

� � 2
totE f

df

dV

Mean doppler  frequency  

Total power 



39 Titel van de presentatie 39 December 2013 ET4169 - Microwaves, Radar and Remote Sensing 

Repeat the procedure for all distances R 

Doppler frequency 

range 

clouds 

rain 

ra
ng

e 

Doppler frequency 

spectrogram of the received power 

noise 

data 

clutter 
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Raw radar signal and Doppler 
spectra Fast 

Fourier 
Transform 

noise 

data 

Field 
strength 

phase 
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Spectrogram = Doppler spectra at every height 

Remove the noise 
Signal clipping at a certain threshold 
 
Remove clutter 
Filter around v=0 m/s 
 
Calculate the total power, mean doppler 
Frequency, and the spectral width 

Further necessary steps 



42 Titel van de presentatie 42 December 2013 ET4169 - Microwaves, Radar and Remote Sensing 

From spectrogram to resulting 
profiles of power and mean 
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IDRA – TU Delft IRCTR Drizzle radar 

IDRA is mounted on 
top of the 213 m high 
meteorological tower. 
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h Specifications 

• 9.475 GHz central frequency 
• FMCW with sawtooth modulation 
• transmitting alternately horizontal and vertical 

polarisation, receiving simultaneously the co- 
and the cross-polarised component 

• 20 W transmission power 
• 102.4 µs – 3276.8 µs sweep time 
• 2.5 MHz – 50 MHz Tx bandwidth 
• 60 m – 3 m range resolution 
• 1.8° antenna half-power beamwidth 

 
 
Reference 
J. Figueras i Ventura: “Design of a High Resolution X-band 
Doppler Polarimetric Weather Radar”, PhD Thesis, TU Delft, 
2009.  (online available at http://repository.tudelft.nl) 
 
Near real-time display: 
http://ftp.tudelft.nl/TUDelft/irctr-rse/idra 
 
Processed and raw data available at: 
http://data.3tu.nl/repository/collection:cabauw 

Courtesy Otto 



44 Titel van de presentatie 44 January 2015 ET4169 - Microwaves, Radar and Remote Sensing 

Source: www.everythingweather.com 

The received power is related tot rainfall rate. 

The question is: how? 
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First step: scattering by one particle 

Incident  
EM-wave 

Radiation pattern scattered wave 

Side scatter 

Forward scatter 
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Definitions to describe scattering by one particle 

Incident power density  
Si  [W/m2] 

Scattered power Ps 
Absorbed power Pa 

Absorption cross-section a

i

P
a SV  

Scattering cross-section s

i

P
s SV  

Extinction cross-section e a sV V V �
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Scattering in all directions 

The definitions one step further: 

s
s A

V]  a
a A

V]  e
e A

V]  

Efficiency factors 

Geometric cross-section of particle 
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Definition radar backscattering cross-section 

24
i b

r
S

S
R
V
S

 

R 
iS r i bP SV 

bV

Radar cross-section       :  
cross-section of equivalent isotropic radiator with power Pr  

bV
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Scattering by a homogeneous dielectric sphere  
in a medium 

Background medium 

2r 

Normalized radius 

'2 2

o

r rS SF H
O O

  ' ''jH H H �

2nH  
H
n

permittivity 
refractive index 

wavelength in sphere O wavelength in background 0O
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Scattering by a sphere is given by the Mie-formulas: 
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al, bl :  
Bessel, Hankel functions 
depending on size and permittivity 
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Example of radar Cross Section ǔ 
Monostatic radar cross section of a conducting sphere: 

a 
O 

.. radius of the sphere 

.. wavelength 

Rayleigh region: a << O 

Resonance / Mie region: 
 

Optical region: a >> O 

Figure: D. Pozar, “Microwave Engineering”, 2nd edition, Wiley. 
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electrical size 
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The Mie-formulation is exact for all particle sizes  
and wavelengths 

but quite intractable, 
therefore: approximations! 

Most common: rayleigh approximation 

Particle small compared to wavelength 
Small phase shift of wave inside particle 

1nF �
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Rayleigh scattering by a sphere 

 ௦ܧ

 ௦ܧ

The scattered field 
depends on the looking 
direction and polarization 
of the incoming field 

polarizibility 
Dipole moment: the sphere acts like  
a dipole 
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Physical interpretation Rayleigh approximation 
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Unpolarized wave (Iz=Iy=Io): 
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Physical interpretation Rayleigh approximation 

Dipole field distribution T
Side view 

Helicopter view 

I

Dipole 

I parallel 

I perpendicular 

I parallel 

I perpendicular 

Sum of both 
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The Rayleigh fields lead to the following cross-sections: 

These cross-sections 
result from integration 
of the scattered-field  
intensities over space 
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Independent of separation between particles 

Forward scattering is always coherent: constructive interference 
Scattering in other directions is always (partially) incoherent:  
(partially) destructive interference: less signal 

The summation of fields from different scatterers 
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2 0n

N
j

n

e SI o¦
2 nje SI

In case of many dipoles with random position: 

The scattering in the non-forward direction decreases, 
and becomes very small in the backward direction 

Now suppose we have a large sphere, compared to the wavelength: 
we can regard the sphere as a collection of dipoles, which means we get 
a radiation pattern. The consequences can be seen in the following  
Examples> 
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Small particle: 
One dipole 
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Particle size increased a bit: 
Less energy scattered  
backwards 
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Large particle: 
Even less scattering  
backwards 
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Very large particle: 
No scattering backwards 
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0.3 mm 3 mm 30 mm 

Rayleigh region 

wavelength 

Here we see that  
Longer wavelengths 
Are better for rain  
Measurements, because  
Scattering still occurs  
in the rayleigh region 

Typical size of raindrops 
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Radar Equation for Weather Radar 
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radar constant radar reflectivity factor z, purely a 
property of the observed precipitation 

Material property 
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Radar Reflectivity Factor z 

� �dBZ
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iDz
Æ spans over a large range; to compress it into a 

smaller range of numbers, a logarithmic scale is 
preferred 

To measure the reflectivity by the weather radar, we need to: 
 

- know the radar constant C, 
- measure the mean received power Pr, 
- measure the range R, 
- and apply the radar equation for weather radars: 
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Raindrop-Size Distribution N(D) 
!6)( 7
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dDDNDDz i

where N(D) is the raindrop-size distribution that tells us how many drops 
of each diameter D are contained in a unit volume, i.e. 1m3. 
 

Often, the raindrop-size distribution is assumed to be exponential: 

� � � �DNDN /� exp0

Intercept parameter (m-3mm-1)        slope parameter (mm-1) 

Marshall and Palmer (1948): 
 
N0 = 8000 m-3mm-1 

ȁ = 4.1·R-0.21 
 

with the rainfall rate R (mm/h) 
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� � � �DNDN /� exp0

Intercept parameter (m-3mm-1)        slope parameter (mm-1) 

The raindrop size distribution is a model we need to interpret the 
radar received power in terms of rainfall rate. 

In case of the Marshall-Palmer distribution we fix No, and let the slope  
parameter vary. We therefore need one radar observable to estimate 
the slope parameter. 
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Reflectivity – Rainfall Rate Relations 
³ 
D

dDDNDz )(6reflectivity (mm6m-3) 

³ 
D

dDDND )(
6

LWC 3Sliquid water content (mm3m-3) 

³ 
D

dDDNDvDR )()(
6

3S
rainfall rate (mm h-1) 

Æ the reflectivity measured by weather radars can be related to the 
liquid water content as well as to the rainfall rate: 

 
 power-law relationship 
 

 the coefficients a and b vary due to changes in the raindrop-size 
 distribution or in the terminal fall velocity. 
 

 Often used as a first approximation is a = 200 and b = 1.6 

terminal fall velocity 

baRz  

raindrop volume 

࢜ ࡰ = ૢ.૟૞ െ ૚૙.૜ିࢋ૙.૟ࡰ 
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Importance of knowing dropsizes 

Drop Size #/m^3 Z Water Volume 
per cubic meter 

1 mm 4096 36 dBZ 2144.6 mm3 

4 mm 1 36 dBZ 33.5 mm3 

Raincell: cylinder 10km diameter, 2 km height: 157079632679 m^3 
Difference: 314159265 liter or the average annual water consumption of  
3315 ‘standard’ households in The Netherlands 
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How constant is N(D)? 

Histograms of dropsize measurements 

In our model we assumed a fixed No. 
How correct is that? 
 
Here we see a histogram of  
independent observations of No 
 
Apparantly our model is not that 
accurate: No is not constant! 

So the question comes: 
How can we measure No 
with the radar? 

We can do this with polarization. 
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Can Polarimetry add Information? 
Î   yes, because hydrometeors are not spheres 
 
 
 
 
   - ice particles 
 
 
 
 
   - hail 
 
 
 
 
   - raindrops 

http://commons.wikimedia.org/wiki/Category:Hail 

http://upload.wikimedia.org/wikipedia/commons/a/a5/Hail_-NOAA.jpg
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Observed shapes of raindrops 
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Axial ratio of raindrops versus size 

a 
b 

Axial ratio = a/b 

When the particle becomes oblate or prolate,  
the backscattering becomes 

polarization dependent: 
 

axial ratio < 1: HH > VV; axial ratio > 1: HH < VV; axial ratio = 1: HH = VV 
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Measurement Principle 

Zhh (dBZ) 

Zvh (dBZ) 

Zhv (dBZ) 

Zvv (dBZ) 

Data: POLDIRAD (DLR, Oberpfaffenhofen, Germany), Prof. Madhu Chandra 

transmit 
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Measurement Principle 

Zhh (dBZ) 

Zvh (dBZ) 

Zhv (dBZ) 

Zvv (dBZ) 

Data: POLDIRAD (DLR, Oberpfaffenhofen, Germany), Prof. Madhu Chandra 

transmit 

re
ce

iv
e 

- 
= Zdr 

differential 
reflectivity 
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Changing raindrop shape 

� �dBZlog10 2
hhhh PCRZ  � �dBlog10

vv

hh
dr P

P
Z  

Differential Reflectivity Reflectivity 

Data: POLDIRAD (DLR, Oberpfaffenhofen, Germany), Prof. Madhu Chandra 

rain 

Increasing rainfall Increasing polarization dependence 
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� � � �

� � � �
� � � �

hh hh

hhhh
dr

vv vv

Z N D D dD

N D D dDZZ
Z N D D dD

V

V

V

 

  

³
³
³

� �
,

:
:hh vv

N D dD

V

Number of drops with diameter between D and D+dD 

Radar cross-section for hh or vv polarization 
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� � � �
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� � � �
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dr
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Z N D D dD

N D D dD
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N D D dD

V
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V
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� �

� �

� �

exp 3.67

exp 3.67

exp 3.67

hh o hh
o

hh
o

dr

vv
o

DZ N D dD
D

D D dD
D

Z
D D dD
D

V

V

V

§ ·
 �¨ ¸

© ¹
§ ·
�¨ ¸
© ¹ 
§ ·
�¨ ¸
© ¹

³

³

³

Polarimetry gives better estimate of N(D) 
Because we can estimate two parameters 
of our model now. 

Zdr gives Do 

Do and Zhh gives No 



80 Titel van de presentatie 80 January 2015 ET4169 - Microwaves, Radar and Remote Sensing 

Estimation of raindrop-size 
distribution � � � �DNDN /� exp0

intercept (m-3mm-1)        slope parameter (mm-1) 

1. the differential reflectivity Zdr depends only on the slope parameter ȁ, 
so ȁ can be directly estimated from Zdr 

2. once that the slope parameter is known, the concentration N0 can be 
estimated in a second step from the reflectivity Zhh 

Data: IDRA (TU Delft), Jordi Figueras i Ventura 
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Observations and models revisited 

³ 
D

dDDNDz )(6 ³ 
D

dDDNDvDR )()(
6

3S baRz  + 

The model we use to describe 
that part of reality we need to  
transform radar observations 
into rainfall rate 

ݒ ܦ :  ݏ݌݋ݎ݀݊݅ܽݎ ݂݋ ݀݁݁݌ݏ ݈݈݂ܽ ݈ܽ݊݅݉ݎ݁ݐ

ܰ ܦ  ݊݋݅ݐݑܾ݅ݎݐݏ݅݀ ݁ݖ݅ݏ݌݋ݎ݀:

We used polarization to estimate the parameters of N(D). 
We assumed a model for v(D). 
Can we use v(D) to our advantage? 

࢜ ࡰ = ૢ.૟૞ െ ૚૙.૜ିࢋ૙.૟ࡰ 
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Doppler frequency 

Power 

Doppler Width 

Recall the Doppler spectrum 

� �

� �

� � � �

2

2

22

1

1

tot tot

d tot
tot

d d tot
tot

P E f df

f f E f df
P

f f E f df
P

V

 

 

 �

³

³

³

f

� � 2
totE f

df

dV

Mean doppler  frequency  

Total power 

The Doppler frequency is related to the speed 
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� � � � � �

� � � �� � � �

� � � �� � � �

2 ( ) cos ; 0 ( )

V D
tot tot tot

V
tot tot tot

V V D
tot tot tot

E f df S v dv S D dD

dv
E f E f v S v

v D
f to the vertical

df

dD
S v S v D S D

dv

T T
O

 

  

  

  

 

When the radar looks upwards, the Doppler  
frequency gives the fall speed 

When we measure the  
Doppler spectrum, 
we also measure dropsizes! 
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Doppler speed 

Power 

Recall the Doppler spectrum again 

v
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 ݒ݀

Power due to  
all particles with  
speed between v and v+dv, 
or size between D and D+dD 
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The Doppler spectrum 
in terms of radar cross section 

Complication:  
   Doppler spectrum broadening by turbulence; 
   Shifted by mean wind 

So, if we measure the Doppler spectrum,  
we can retrieve the dropsize distribution  
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Results: dropsize distribution 
 plus impact of errors due to turbulence and wind 

Procedure 

Measure the Doppler spectrum 
Compare the observation with the model 
Change the model parameters (No, Do for instance) 
Minimize the difference between the model and observation 
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Example: measured Doppler 
spectrum plus curve fit 

Courtesy Moisseev 
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Can we combine Doppler and 
polarization? 

( ) ( , ) ( ) ( , )

( ) ( , ) ( ) ( , )
hh

vv

v v
hh

dr v v
vv

N D D dD N v v dv
Z

N D D dD N v v dv

V E V E

V E V E
  ³ ³
³ ³

1a
D

b
E �

a 

b 

1- the fall speed depends on the particle size (Doppler) 
2- the axial ratio depends on the particle size (polarization) 

Model of axial ratio 
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Combine the Doppler spectrum and 
the Zdr 

Doppler spectrum  Dropsize distribution 

Dropsize distribution + Zdr 1a
D

b
E � �



90 Titel van de presentatie 90 January 2015 ET4169 - Microwaves, Radar and Remote Sensing 

Example of retrieved drop shapes 

Tara radar, in The Netherlands 

CSU-CHILL radar, in Colorado 

Courtesy Moisseev 

More oblate 

Less oblate 
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The Zdr can also be used for 
hydrometeor classification 

� �dBZlog10 2
hhhh PCRZ  � �dBlog10

vv

hh
dr P

P
Z  

Differential Reflectivity Reflectivity 

Data: POLDIRAD (DLR, Oberpfaffenhofen, Germany), Prof. Madhu Chandra 

rain 
melting layer 
snow 
ice crystals 
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Velocity  

Spectral reflectivity 

hh 

vv 

hh / vv 

Spectral differential reflectivity 
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ACCEPT campaign, Cabauw, 12-10-2014 

Time height reflectivity 



TU Delft Climate Institute 
Remote Sensing of the Environment 

A 
T 
M 
O 
S 

A 
T 
M 
O 
S 

Delft 
University of 
Technology 

Spectrogram reflectivity 
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Spectrogram differential reflectivity 
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Ice crystal classification 

Courtesy Durfournet 
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Spectral-polarimetric classification  

Courtesy Durfournet 
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Observation plus model leads to a better 
understanding of rainfall formation  

Boundary layer 
echo 

drizzle 

Melting layer 

rainfall 

Ice and mixed-
phase cloud 

Courtesy Durfournet 
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Short summary of remote sensing in 
this course 

• Radar signals: behaviour, estimation of appropriate descriptors, 
accuracy 

• The use of models for data interpretation 
• Scattering by spheres 
• Use scattering theory to define useful signal characteristics we 

need for the observations 
• The inverse problem 
• Application to Doppler-polarimetric weather radar 
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Composite KNMI C-band Radar 

12:30 UTC  13:30 UTC  14:30 UTC  15:30 UTC  16:30 UTC  17:30 UTC  Radar position 
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Clouds and rainfall 

Courtesy of Tobias Otto, Yann Dufournet, Christine Unal 
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